Термоэлектронная эмиссия тем более подтверждает высказанное предположение о нехимической природе всех органических и множества неорганических веществ.
Термоэлектронная эмиссия при постоянной температуре ослабевает. Однако ее можно вновь восстановить, если резко повысить температуру вещества, а потом вновь вернуть ее в исходное состояние. Такой скачкообразный бросок тепловой энергии вновь принуждает нейтроны атомов превращаться в протоны или в мезоны, обладающие зарядом электронов, и за счет этого освобождаться от электронов без накопления электрических зарядов.
Свойство термоэлектронной эмиссии, как мною было установлено, обратимо, как обратимы эффекты Пельтье и Зеебека.
При термоэлектронной эмиссии мы обнаруживаем излучение электронов из веществ от нагрева, при котором зарядность, как это бывает при фотоэффекте, отсутствует.
Однако если термоэлектронно-эмиссирующее вещество облучать потоком электронов, то можно обнаружить в веществе атомы тяжелого и легкого водорода.
Другими словами, термоэлектронно-эмиссирующий эффект является комплексом двух эффектов:
1) эффект термоатомного синтеза (ЭТС);
2) эффект электронного разложения (ЭЭР).
При этом тепловые лучи превращают легкий водород в дейтерий, гелий, бериллий, углерод, кислород и т. д., а поток электронов, напротив, расщепляет все сложные вещества на простые и, главным образом, на тяжелый и легкий водород.
Вот именно эти два эффекта термоэлектронной эмиссии, которые мною были обнаружены, и являются основополагающими в процессах бета-синтеза.
Обращая внимание на ЭЭР, мы можем напомнить, что чем проще вещество, тем в нем более четко обнаруживаются эффекты ЭТС и ЭЭР. Действительно, в атомной физике известно, что наилучшим поглотителем электронов являются тяжелый водород дейтерий (D) или на его основе тяжелая вода (D20), а также углерод (С2), кислород (02) и другие вещества. Поэтому графитовые стержни из углерода и тяжелая вода уже в начале развития атомной энергетики использовались для замедления атомных цепных процессов.
С другой стороны, при изучении многих химических реакций мною было замечено, что в слабом потоке электронов химические реакции идут значительно быстрее. Создается впечатление, что катализ, т. е. ускорение химической реакции, обусловлен не каким-то физическим свойством катализаторов, а обычным их свойством излучать электроны под действием тепловой энергии. Собственно, хорошими катализаторами являются такие вещества, которые обладают значительными ЭТС и ЭЭР.
Если защитить катализаторы от реагентов тонкой
пленкой, свободно пропускающей электроны, то лучшими катализаторами
будут те вещества, которые наиболее сильно проявляют ЭТС. А такие
вещества, как платина, могут обходиться и без самостоятельной защиты,
так как они химически инертны. Наоборот, те вещества, которые ярко
реализуют ЭЭР, существенно замедляют химические реакции. Их в химии и
физике называют ингибиторами. К ним, в частности, относится, например
Тэги: синтез